Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity during Dictyostelium chemotaxis.

نویسندگان

  • Hui Zhang
  • Deborah Wessels
  • Petra Fey
  • Karla Daniels
  • Rex L Chisholm
  • David R Soll
چکیده

The myosin regulatory light chain (RLC) of Dictyostelium discoideum is phosphorylated at a single serine site in response to chemoattractant. To investigate the role of the phosphorylation of RLC in both motility and chemotaxis, mutants were generated in which the single phosphorylatable serine was replaced with a nonphosphorylatable alanine. Several independent clones expressing the mutant RLC in the RLC null mutant, mlcR(-), were obtained. These S13A mutants were subjected to high resolution computer-assisted motion analysis to assess the basic motile behavior of cells in the absence of a chemotatic signal, and the chemotactic responsiveness of cells to the spatial, temporal and concentration components of natural cAMP waves. In the absence of a cAMP signal, mutant cells formed lateral pseudopods less frequently and crawled faster than wild-type cells. In a spatial gradient of cAMP, mutant cells chemotaxed more efficiently than wild-type cells. In the front of simulated temporal and natural waves of cAMP, mutant cells responded normally by suppressing lateral pseudopod formation. However, unlike wild-type cells, mutant cells did not lose cellular polarity at the peak and in the back of either wave. Since depolarization at the peak and in the descending phase of the natural wave is necessary for efficient chemotaxis, this deficiency resulted in a decrease in the capacity of S13A mutant cells to track natural cAMP waves relayed by wild-type cells, and in the fragmentation of streams late in mutant cell aggregation. These results reveal a regulatory pathway induced by the peak and back of the chemotactic wave that alters RLC phosphorylation and leads to cellular depolarization. We suggest that depolarization requires myosin II rearrangement in the cortex facilitated by RLC phosphorylation, which increases myosin motor function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of myosin heavy chain phosphorylation in Dictyostelium motility, chemotaxis and F-actin localization.

To assess the role of myosin II heavy chain (MHC) phosphorylation in basic motility and natural chemotaxis, the Dictyostelium mhcA null mutant mhcA(-), mhcA(-) cells rescued with a myosin II gene that mimics the constitutively unphosphorylated state (3XALA) and mhcA(-) cells rescued with a myosin II gene that mimics the constitutively phosphorylated state (3XASP), were analyzed in buffer and in...

متن کامل

Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum.

Behavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shea...

متن کامل

Regulation of myosin regulatory light chain phosphorylation via cyclic GMP during chemotaxis of Dictyostelium.

Previous studies on the chemotactic movement of Dictyostelium have indicated a role for cyclic GMP in regulating the association of myosin II with the cytoskeleton. In this study we have examined the part played by phosphorylation of the 18 kDa myosin regulatory light chain in this event. Using streamer F mutant NP368 (which is deficient in the structural gene for cyclic GMP-specific phosphodie...

متن کامل

A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium.

Chemotactic stimulation of Dictyostelium cells results in a transient increase in cGMP levels, and transient phosphorylation of myosin II heavy and regulatory light chains. In Dictyostelium, two guanylyl cyclases and four candidate cGMP-binding proteins (GbpA- GbpD) are implicated in cGMP signalling. GbpA and GbpB are homologous proteins with a Zn2+-hydrolase domain. A double gbpA/gbpB gene dis...

متن کامل

Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium.

To investigate the role played by filopodia in the motility and chemotaxis of amoeboid cells, a computer-assisted 3D reconstruction and motion analysis system, DIAS 4.0, has been developed. Reconstruction at short time intervals of Dictyostelium amoebae migrating in buffer or in response to chemotactic signals, revealed that the great majority of filopodia form on pseudopodia, not on the cell b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2002